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NOTICES 

When Government  drawings,  specif icat ions,  o r  o ther  data  a r e  u s e d  
f o r  any  p u r p o s e  o ther  than in  connect ion with a def ini te ly  r e l a t e d  Gov- 
e r n m e n t  p r o c u r e m e n t  operation, the  United S ta tes  Government  t h e r e b y  
i n c u r s  no respons ib i l i ty  n o r  any obl igat ion w h a t s o e v e r ,  and  t h e  fac t  that  
t h e  Government  may have formulated,  furn ished ,  or i n  any  way suppl ied 
the  s a i d  drawings ,  specif icat ions,  o r  o ther  d a t a ,  i s  not t o  be  r e g a r d e d  by 
impl ica t ion  o r  o therwise  a s  in a n y  m a n n e r  l icensing the  holder  or  any  
o ther  p e r s o n  o r  corpora t ion ,  o r  conveying any  r igh ts  o r  p e r m i s s i o n  t o  
manufac ture ,  use ,  o r  s e l l  any patented invention tha t  m a y  i n  any way be  
r e l a t e d  t h e r e t o .  

T h e  Government  h a s  the r igh t  t o  r e p r o d u c e ,  u s e ,  a n d  d is t r ibu te  t h i s  
r e p o r t  for  governmenta l  purposes  i n  a c c o r d a n c e  with t h e  c o n t r a c t  under  
which the  r e p o r t  w a s  produced. To  p r o t e c t  t h e  p r o p r i e t a r y  i n t e r e s t s  of 
t h e  c o n t r a c t o r  and  t o  avoid  jeopardy of its obl igat ions t o  the  Government ,  
t h e  r e p o r t  m a y  not be  r e l e a s e d  f o r  non-governmental  u s e  s u c h  as  might  
cons t i tu te  g e n e r a l  publication without t h e  e x p r e s s  p r i o r  consent  of T h e  
Ohio S ta te  Universi ty  R e s e a r c h  Foundation. 
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Qualif ied r e q u e s t e r s  may obtain copies  of t h i s  r e p o r t  f r o m  t h e  
Defense Documentat ion Center ,  C a m e r o n  Station, Alexandr ia ,  Virginia .  
Depar tment  of Defense c o n t r a c t o r s  m u s t  b e  es tab l i shed  for DDC s e r v -  
i c e s ,  o r  have t h e i r  "need-to-know'' c e r t i f i e d  by t h e  cognizant  m i l i t a r y  
agency  of t h e i r  p r o j e c t  o r  cont rac t .  
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ABSTRACT 

The Dyadic Green 's  Function pertaining to the electromagnetic 
. field in a n  infinite moving medium i s  derived. 

on Minkowski's theory and the  method of Fourier  analysis  i s  used. 
Also, a second derivation of the same  resu l t  i s  given, which clear ly  
shows the connection between the Green 's  functions for a moving and a 

The derivation i s  based 

stationary me  dium. 
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THE DYADIC GREEN’S FUNCTION FOR AN 
INFINITE MOVING MEDIUM 

INTRODUCTION 

In this  repor t  the Dyadic Green’s  Function pertaining to  the electro-  
magnetic field in a moving medium is found. 
be  of infinite extent in  all directions and t o  be isotropic and homogeneous. 
It moves with a constant velocity, which is assumed t o  be much sma l l e r  
than the velocity of light. 
derived for  harmonic t ime dependence and is solved using a n  operational 
method the same  as has  been used by Bunkin[ 11. 

The medium is a s sumed  to  

The wave equation for  the e lec t r ic  field is 

The problem of the electrodynamics of moving media was  f irst  
solved exactly by Minkowski[ 21 in 1908, and an  excellent discussion 
of his work has  been given by Sommerfeld[ 31. More recently,  a 
review of Minkowski’s theory and a discussion of severa l  cu r ren t  
writ ings on th is  subject have been given by Tai [4] .  In r ega rd  t o  the 
construction of the dyadic function, two other works worth mentioning 
a r e  those by Arbel[  51 and Wu[ 61 on the related problem of radiation 
in  ani  sotr  opic media. 

DERIVATION O F  THE GREEN’S FUNCTION 

Consider a homogeneous and isotropic medium of infinite extent 
in all directions.  Assume t h e  medium moves with a constant l inear 
velocity, 7, with respec t  t o  a fixed coordinate system. 
only the c a s e  where the velocity 17 1 is much l e s s  than the speed of 
light c ,  s o  that (1; I / c ) ~  << 1. 
governing the electromagnetic fields in the medium a r e  [ 7, 8 1  

W e  consider 

In this  ca se  the differential equations 

a v x E =  - - [pH- (ql - “opo) \ rx  E ] , 
I C  v c  

and 

- - -  - a 
a t  

- 
VJX H = - [ € E  -I- ( ~ p .  - copo)  v X H ]  t J , ( 2 )  
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where 

- -  
E, H = the electr ic  and i a g n e t i c  f ie lds ,  

E ,  p, = the permitt ivity and permeabili ty 
of the medium when at rest ,  

E O ' P O  = the permitt ivity and permeabili ty 
of f ree-space,  and 

- 
J = the source  cu r ren t  density, a s sumed  

t o  be known. 

In Eqs. (1) and  (2), a l l  quantities a r e  measu red  in the fixed 
coordinate sys tem.  (MKS units a r e  used. ) 

Equations (1) and (2 )  may be writ ten 

( 3 )  

and 

(4) a t  
where 

and then Eqs. ( 3 )  and (4) may be  combined to  yield the following 
wave equation for E : 

- 

It will be a s sumed  that a l l  field quantities have t ime  dependence 
tjwt e , which reduces Eq. (6 )  t o  

1691- 3 2 



(7) 

where 

Bi 
Equation (7 )  may be solved for 

nkin[ 91, and subsequently by Cho- 

- 
E using a method employed by 

r [ l O ] ,  for  the case  of radiation 
in an  anisotropic medium. 
sys tem with axes xl, xz , x3 ,  Eq. (7) may be written 

In a rectangular Cartesian coordinate 

qij Ej = -jwp Ji, i = 1,2, 3, 
( 9 )  f 

j =1 

where qij is the differential operator;  

with Vz = V," t V: t V: and 6ij, the Kronecker delta, defined by 

A solution for Eq. (9) may be obtained by putting 

3 
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D 

where T '  indicates the volume o c c u h e d  by the source  ye 
Eq. (12) into Eq. (9), and making use of the relation 

On substituting 

3 

k=l T '  

where 6(R I E') is  the Dirac Delta Function, t he re  r e su l t s  

3 3  

3 

Since Eq. (14) must  hold for a r b i t r a r y  7, it follows that  

5 - 

j=1 

Equation (15) may be solved by setting 

where  Djk is the differential operator  defined by 

kj ' Djk = cofactor of q 

- -  
and G(R 1R') is a sca l a r  function, Then 

3 

(18) 1 qij Djk = 6ik 8 

j rl 
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1 -  with D the determinant  of the ma t r ix  {q. .} 
1J 

(19) D = det {qij} , 

- -  
a n d  the scalar function G(R IR')  m u s t  satisfy 

A function satisfying Eq. (20) may be constructed as  follows: 
Fir st define 

- - -  
(22) r = R - R '  . 

F r o m  Eq. (lo),  it may be seen  that 

- -  - -  
(23) 

where  

qij exp(-j p r) = Pij  exp(-j p 0 r I , 

. c -  

t w Z  bij V V - k2 S i j  . 
Hence 

- -  
and  therefore  a solution for  G!R 1 R - I )  i s  given h x r  

- Y  

1691- 3 5 



- 
Next, it will be supposed that V lies entirely i n  the $,-direction. 

That is, 

Since the orientation of the coordinate sys tem is a r b i t r a r y  up t o  this  
point, this assumption involves no lo s s  of generali ty.  With this  
simplification, it is found f rom Eq. (24),  af te r  considerable a lgebra ,  

W i t h  Eq. (28 )  substituted in Eq. (26),  the iFtegration on p, i s  easi ly  
done by CauchyRs Residue Theorem. 
integration may be closed on an  infinite semi-circle  in  the lower-half p3- 
plane. For  x3 < x; it may be closed i n  the upper-half p3-plane. Since 
the t ime convention i s  e+jwto the (double-order) pole at p3 = - w V 3 t J w ' z  
may be considered a s  lying slightly below the  real p3-axis, corresponding t o  
a small amount of conduction lo s s  i n  the dielectr ic  medium. 
pole at p3 = -wV3 - 4- is  considered as  lying slightly above the r ea l  
ps-axis. 

Fo r  x3 > x, , the  contour of 

Similarly,  the 

The residue of the  pole at p3 = -wV3 t 4- is 

so  that for xg > x ' ~  , 

1691-3 6 



, .  
-00 

The res idue  of the  pole at p3 =-wV3 - \I kZ -pf -p: is  

and thus for  x3 < xi , 

Combining Eqs. (30)  and ( 3 2 )  yields for  any x 3 ,  x3', 

which may be writ ten 

1691-3 7 



Next, the change of var iables  

(35) x1 - xi = r cos  0 ,  

I' (36) xz - xz = r sin 8, 

( 3  7) 

( 3 8 )  

( 3 9 )  

is made, giving 

- j  1x3 -x3' 14 kZ -pz 
p dp da . e - jpr  cos (a-0) e 

( -  

The integral  on a is easily done[ 1 I ] ,  with the r e su l t  

t 
joV3 (x3-x3 1 

JJpr )  P dP ; 
j e  

(41) G(R 15') = 
8rr k3 ak 

0 

or  equivalently 

03 

- -  e a e 
t jwV, (x3 -x3 I )  

(42)  G(R IR ' )  = - Jo(Pr)  P dP * 

81.r k3 

1691-3  8 



c 

The integral  in Eq. (42)  is S 
Eq. (42) yields 

mmer fe ld ' s  int g ra l [  121. Thus 

where 

- -  
Performing the differentiation finally gives, for G(R 1R') , 

- -  - -  
From G(R lR1),  the quantities Tjk(R IR') in  Eq. (12)  may now 

From Eqs. (17) and ( l o ) ,  it is found that for the c a s e  be  computed. 
where  V, = V, = 0, 

a 2  
ax ax, 

a 2  
a X; 
- t k Z  

Thus,  Eq. (16)  gives 



I 

I 
b 

o r ,  f r o m  Eq. (5),  

Notice that with v3 = 0, Eq. (48) yields the components of the f r e e -  
space dyadic Green 's  function (with ~ , p  
the velocity i s  to  change the phase constant in the direction of the velocity. 
Fo r  e y m p l e ,  i f  EIJ. > c o p o  and v3 > 0, the phase constant in the region 
x3 > x3 is  decreased by an  amount w ( ~ p  - ~ . ~ p  0)v3 ; therefore  the wavelength 
and the (phase) velocity of propagation a r e  both increased  correspondingly. 

replacing co,po) .  The effect of 

In the derivation of Eq. (48), it was a s sumed  that the velocity l ies  
entirely in the x3 -direction. It i s  easy to  su rmise  f rom the fo rm of 
Eq. (48), however, that  in the genera1,situation where v i s  oriented 
a rb i t r a r i l y  with respec t  to the coordinate sys tem 

- 

That Eq, (49) is indeed co r rec t  may be verified by substitution into Eq. (15), 
o r  by subjecting Eq. (48) to  a rotation of coordinates.  

It i s  worth remarking that once the solution for T i s  known, 
jk simpler  "derivations" of it can be re.cognized. 

derivation is included in  the Appendix. 
One possible a l te rna te  

CONCLUSIONS 

The Dyadic Green 's  Function for an infinite moving medium has 
been found. 
Eq. (12), where the nine components T 
It i s  noted that the effect of the velocity of the moving medium is  to  
change the phase constant in the direction of the velocity. 

The solution of Eq. (7)  fo r  the e lec t r ic  field is given by 
(E \E') a r e  given in  Eq. (49)- jk  

Bunkin*s method, which is systematic  and s t ra ightforward,  has  
been used to derive the Green 's  Function. Of course ,  a f t e r  the answer 
i s  known, s impler  and m o r e  direct  methods of deriving it can be found. 
One such "derivation" is  given in the Appendix. 

1691-3  10 
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APPENDIX 

AN ALTERNATE DERIVATION 
O F  THE GREEN'S FUNCTION 

- - 
Let T be the Dyadic Green t s  Function for the moving medium. 

= 
(The double overbar indicates a dyadic quantity; T has  nine components 

Tjk. ) 
I 

T i s  required to  satisfy the vector differential equation 

=. 
where is  the idemfactor. We wri te  T as  the produce of a scalar 

function 4 and another dyadic 'r' : 
- 

where the scalar  function is to  be chosen in such a way as to  simplify 

Eq. (A-l)e F r o m  the relation 

(A-3) 

it l e  seen that  i f  + is chosen so that 

then Eq. (A-3) reduces to 

(A- 5) 
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and a l so  

Equation (A-5) i s  easily solved. One possible solution is 

(A- 7) 
t j w  T i? + = e  0 

Thus, the substitution of Eq. (A-2) into Eq. (A-l)* with + given by 

Eq, (A-7), reduces Eq, (A-1) to  

(A-8) 

or  finally 

The last equality in  Eq. (A-9) follows from the propert ies  of the Delta 

function. 

-jay 0 Rl 
Except for  the constant factor e , Eq, (A-9) is  the s a m e  

as the equation fo r  the free-space Dyadic Green's Function (with k 

replacing the free-space propagation constant ko). 

to  Eq. (A-9) i s  given by 

Hence the solution 
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and, therefore, 

(A-11) 
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